Positive Solutions of Singular Fourth-order Boundary-value Problems
نویسندگان
چکیده
In this paper, we present necessary and sufficient conditions for the existence of positive C3[0, 1]∩C4(0, 1) solutions for the singular boundaryvalue problem x′′′′(t) = p(t)f(x(t)), t ∈ (0, 1); x(0) = x(1) = x′(0) = x′(1) = 0, where f(x) is either superlinear or sublinear, p : (0, 1) → [0,+∞) may be singular at both ends t = 0 and t = 1. For this goal, we use fixed-point index results.
منابع مشابه
On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملThree symmetric positive solutions of fourth-order nonlocal boundary value problems
In this paper, we study the existence of three positive solutions for fourth-order singular nonlocal boundary value problems. We show that there exist triple symmetric positive solutions by using Leggett-Williams fixed-point theorem. The conclusions in this paper essentially extend and improve some known results. MSC: 34B16.
متن کاملPositive Solutions of Boundary Value Problems for System of Nonlinear Fourth-Order Differential Equations
Some existence theorems of the positive solutions and the multiple positive solutions for singular and nonsingular systems of nonlinear fourth-order boundary value problems are proved by using topological degree theory and cone theory.
متن کاملPositive Solutions of a Singular Positone and Semipositone Boundary Value Problems for Fourth-Order Difference Equations
This paper studies the boundary value problems for the fourth-order nonlinear singular difference equationsΔ4u i−2 λα i f i, u i , i ∈ 2, T 2 , u 0 u 1 0, u T 3 u T 4 0. We show the existence of positive solutions for positone and semipositone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems i...
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کامل